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ABSTRACT

We examined whether Al responses to arbitrary spectral profiles can be explained by the su-
perposition of responses to the individual ripple components that make up the spectral pattern.
For each unit, the ripple transfer function was first measured using ripple stimuli consisting of
broadband complexes with sinusoidally modulated spectral envelopes (Shamma et al. 1994).
Unit responses to various combinations of ripples were compared to those predicted from the
superposition of responses according to the transfer function. Spectral profiles included combi-
nations of 2-5 ripples of equal amplitudes and random phases, and vowel-like profiles composed
of 10 ripples with various amplitudes and phases. The results demonstrate that predicted
and measured responses are reasonably well matched, and hence support the notion that Al
analyzes the acoustic spectrum in a substantially linear manner.
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INTRODUCTION

The acoustic spectral profile is a primary cue in the perception of timbre (Plomp 1976). A
fundamental goal in auditory cortical physiology has been to understand how this profile is rep-
resented in the firing rate of cortical cells, or, equivalently, how might one predict the responses
of a single unit to arbitrary spectral profiles. In Al the most commonly used descriptor of
unit responses has been the frequency response area (e.g., Phillips et al. 1991). As convention-
ally defined and measured, it provides information about the best (or characteristic) frequency
(BF), and surrounding excitatory and inhibitory influences upon the cell. While these measures
have been useful as a qualitative guide to the responses expected of a single unit to tonal and
other narrowband stimuli, they are not suitable for precise quantitative predictions of responses
to arbitrary spectral profiles.

More appropriate response area measures could be derived from the responses of Al cells
to broadband rippled spectra, i.e., spectra with sinusoidal envelopes (Calhoun and Schreiner
1993; Shamma et al. 1994). Specifically, each unit could be characterized by a so-called
“ripple transfer function” which reflects the magnitude and phase of its response to different
ripple frequencies. Most Al cells exhibit bandpass transfer functions that are tuned around a
characteristic ripple frequency and phase. These latter two parameters are roughly correlated
to the bandwidth and asymmetry of the response area (Shamma et al. 1994). Based on this
finding, it was concluded that most Al cells exhibit a linear component in their responses. Under
the assumption of linearity, it is theoretically possible to predict the responses of a unit to any
spectral profile by applying the “principle of superposition”. Following this principle, the profile
is decomposed into its constituent ripple components, and then the weighted contributions of
each ripple component are summed according to the cell’s ripple transfer function.

In this report, we examine directly the extent to which ripple superposition (and hence the
linearity of the system) holds. Specifically, we shall compare the responses of Al cells to various
combinations of ripples with those predicted from their ripple transfer functions.

METHODS

Surgery and animal preparation

The ferrets were anesthetized with sodium pentobarbital (40 mg/kg). Anesthesia was main-
tained throughout the experiment by continuous intravenous infusion of pentobarbital. The
ectosylvian gyrus, which includes the primary auditory cortex was exposed by craniotomy and
the dura was reflected. The contralateral ear canal was exposed and partly resected, and subse-
quently a cone-shaped speculum containing a Sony MDR-E464 miniature speaker was sutured
to the meatal stump. For details on the surgery see Shamma et al. (1993, 1994).

Acoustic stimuli

For each cell, we measured a frequency response curve with up to 1/8 octave resolution
at low intensity. The best frequency (BF) was determined from this response curve as the
frequency which evoked the best response (thus, BF approximates the frequency of the lowest
threshold). The rate-level function at BF was measured at a range from 35 to 85 dB SPL in
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order to determine the cell’s response threshold and the nonmonotonicity. The criteria were 10
% of maximum response and a decrease of 25% with increase of intensity, respectively.

All other stimuli used in these experiments were broadband complex sounds consisting of 101
tones that were equally spaced along the logarithmic frequency axis and spanning 4.32 octaves
(e.g., 1-20 kHz or 0.5-10 kHz), as illustrated in Fig. 1. The range was chosen such that the
response area of the cell tested lay within the stimulus’ spectrum. The spectral envelope of the
complex was then modulated in one of two ways, either as a single sinusoid along the frequency
axis on a linear or logarithmic amplitude scale (Fig. 1A), or as a waveform representing the
superposition of several sinusoids (Fig. 1B).

The overall level of the complex stimulus was defined by the level of a single frequency
component, L; dB SPL in the flat complex. Thus, the overall level for a flat complex with 101
components (ripple amplitude AA at zero) was taken to be L, + 10log(101) ~ L, + 20 dB.
The overall stimulus level was chosen on the basis of the threshold at BF, typically L, was
set about 10 dB above threshold. High levels (L, > 65 dB SPL) were avoided to ensure the
linearity of our acoustic delivery system. The amplitude of a single ripple was defined as the
maximum percentage or logarithm change in the component amplitudes. Ripple amplitudes
were at 90-100% or 10 dB modulation. In a few cases, different ripple amplitudes and stimulus
levels were tried.

The ripple frequency () is presented in units of cycles/octave against the logarithmic
frequency axis. The ripple phase (®) is presented in radians (or degrees) relative to a sine wave
starting at the left edge (low frequency edge) of the complex (Fig. 1A). In order to measure the
ripple transfer function of a cell, a series of tests were carried out using rippled spectra with
a range of ripple frequencies  (usually from 0-2 cycles/octave with different resolutions) and
ripple phases ® (from 0-7x /4 in 7 /4 steps). Each stimulus was typically repeated 20 times.

A multiple-ripple stimulus typically consisted of 2 to 5 ripple components. The relative
amplitude and phase of each ripple was first specified. The compound waveform due to the
superposition of all ripples was then generated and used to shape the envelope of the spectrum
as before. The spectral range, overall level, and ripple amplitude of the compound ripple stimuli
were set as in the single ripples.

The complex stimulus bursts had 10 ms rise/fall time and 50 ms duration. They were
computer synthesized, gated, and then fed through a common equalizer into the earphone.
Calibration of the sound delivery system (up to 20 kHz) was performed in situ using a 1/8-in.
Briiel & Kjaer probe microphone (type 4170). The microphone was inserted into the ear canal
through the wall of the speculum to within 5 mm of the tympanic membrane. The speculum
and microphone setup resembles closely that suggested by Evans (1979).

Recordings

Action potentials from single units were recorded using glass-insulated tungsten microelec-
trodes with 5-6 M{) tip impedances. Neural signals were led through a window discriminator
and the time of spike occurrence relative to stimulus delivery was stored using a Hewlett-
Packard 9000/800 series minicomputer. The computer also controlled stimulus delivery, and
created various raster displays of the responses.

In each animal, electrode penetrations were made orthogonal to the cortical surface. In
each penetration, cells were typically isolated at depths of 350-600 pm corresponding to cortical
layers III and IV (Shamma et al. 1993).
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Data analysis for single ripple stimuli

Figure 2 illustrates the display and initial analysis applied to the data. Details of these pro-
cedures are described in Shamma et al. (1994). Here the cell was tested over ripple frequencies
0-2 cycles/octave in steps of 0.4 cycles/octave. For each ripple, the responses to a full cycle of
the ripple (i.e., 27 phase change) was measured at 8 steps. The spike counts at each phase step
were made over a 60 ms time window starting shortly (10 ms) after the onset of the stimulus.
These counts are indicated by the small circles, which are connected by the dashed lines, in the
plots of Fig. 2A. The baseline at each ripple frequency (represented by the dotted horizontal
line) was set equal to the spike count obtained from the flat spectrum (£ = 0).

The axis at the bottom, labeled as § (octaves), indicates the equivalent amount of shift
each ripple pattern undergoes at each phase step. For instance, for a 0.4 cycles/octave ripple,
response measurements over a full cycle are equivalent to shifting the spectral pattern by 2.5
octaves along the logarithmic frequency axis. The same phase steps for a 0.8 cycles/octave
pattern are equivalent to shifting it by half as much (1.25 octaves). To estimate the ripple
transfer function (T'(2)) of the cell, an 8-point Fourier transform is performed on the spike
counts at each ripple frequency. The magnitude and phase of the primary response component
synchronized to the ripple frequency Q (AC(2)) is then extracted and weighted by the rms
value of the response as follows:

JAGY)| — [ACL(0)]

if |AC1 ()] - |AC1(0)] 2 0 5

T(Q) = 0 if |[AC1(Q)| — |AC1(0)] < 0

where |AC;()| is the magnitude of the :** Fourier component of the response. In general terms
T(f2) can be written as follows:

(%) = |T(2)|e"*® (2)

where j = /—1. Figure 2B illustrates the magnitude |7'(Q?)| and the unwrapped phase ®(£2)
of the transfer function 7'(2). This ripple transfer function can be inverse Fourier transformed
to obtain the response field (RF) of the cell shown in Fig. 2. The RF is comparable to an
iso-intensity response curve, such as measured with two-tone stimuli, with the positive peak
representing the excitatory portion and the negative peak representing the inhibitory portion.

Several parameters characterize the ripple transfer function and the RF. The first is the
characteristic ripple frequency, §2,, which is the ripple frequency where the magnitude of the
transfer function, |T'(Q)|, is maximum. This parameter reflects the width of the RF near its
center. In general, the higher the characteristic ripple, the narrower the corresponding RF.

Two other parameters are derived from a linear fit of the phase function according to

3(0) = 2,0 + 8, (3)

where z, is the slope of the line, and ®, is its intercept. The parameter z, reflects the location
(in octaves) of the RF relative to the left edge of the ripple. The parameter ®, (called the
characteristic phase) roughly indicates the asymmetry of the RF about its center. For instance,
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the RF is symmetric for , = 0, and strongly asymmetric for ®, = £90° (e.g., as in Fig. 2B).
Another response parameter is the location of the maximum of the RF along the tonotopic
axis. This has been shown to correspond well to the tonal BF of the cell and hence will be
labeled as such in this paper. The RF (or the ripple transfer function) was usually measured
only at one stimulus level which elicited a relatively strong response. This is justified by the
fact that the RF remains relatively stable with overall stimulus level (Shamma et al. 1994).

Data analysis for combinations of ripple stimuli

Responses to spectra composed of multiple ripples were recorded and compared to pre-
dictions made from the ripple transfer function of the cell. The experimental paradigm is
illustrated in Fig. 3. In Fig. 3A, the spectral profile (whose ripple content is designated as I(2)
to the right) consisted of two equal amplitude ripples at 0.4 and 0.8 cycles/octave and at the
arbitrary phase values indicated (—105°, —41°). The spectral profile is shifted (to the left) in
small enough steps corresponding to at least 8 samples of the maximum ripple frequency in
the complex. In this example, the maximum ripple frequency is 0.8 cycles/octave, and hence
to sample it in 8 steps, requires each shift to be 0.156 octaves (Fig. 3B). The total number of
shifts made corresponds to a full cycle of the complex profile (3 = 2.5 octaves). A raster of
the responses to all these shifted profiles is collected as shown in Fig. 3B. A spike count curve is
then made over the 60 ms window indicated by the arrows in the raster. The resulting response
rm(6) is plotted as the dashed curve in Fig. 3C. Except where specifically indicated, responses
were measured at the same overall stimulus level as that used to measure the ripple transfer
function of the unit.

If the cell behaves linearly, then the response to the ripple complex should correspond to
the superposition of the responses to the two isolated ripples. Thus, one could test the linearity
of the cell by comparing the response predicted from the transfer function T'(2), r,(6), to the
measured response, 7,,(8) (solid and dashed curves in Fig. 3C, respectively). The predicted
response is computed from T'(2) and the ripple content of the stimulus, I(€), as follows:

rp(6) = FH{T(Q)1(Q)} (4)

where F~1{-} designates the inverse Fourier transform operation with respect to Q, I(f) is the
ripple content of the stimulus, and T'(2) is the ripple transfer function. An equivalent way to
compute the predicted response, which follows directly from Eq. 4, is to convolve the impulse
response of the cell, or to cross correlate the RF of the cell, w(z), with the stimulus spectral

profile, p(z):

(8 = ¥ w(a + O)p(a) 5)
where z is the logarithmic frequency axis (i.e., ¢ = log, frequency(kHz)). Therefore, the pre-
dicted response in Fig. 3C is the sum of the curves fitted to the individual ripple responses (i.e.,
the solid curves in the bottom two panels in Fig. 2A) except with each curve linearly amplitude
scaled and phase shifted according to the amplitude and phase of the ripple components in the
stimulus, 1(Q).

The measured and predicted response curves will be illustrated as in Fig. 3C for several
cells and tests. The baseline of the predicted response r,(§) is aligned with the spike count of
the flat spectral profile, 7,0 (denoted by the dotted line). For display purposes, the predicted
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curve is then arbitrarily scaled to match visually the measured response. An objective (scale
insensitive) measure of the match between the two curves is the correlation coefficient p defined

as:
) Zrn(®)  ra)y(6)

Vs (rm(8) = rma)? - Tar(6)
where r,,,(6) and r,(6) are the measured and predicted response curves. If p = 1, the two
curves are identical in shape; the match is worse as p decreases. For p = —1 the curves are
inverted versions of each other. Response curves were often distorted in obvious ways relative
to the predicted curve because of the effects of saturation and rectification of firing rates (i.e.,
the half-wave rectified response in Fig. 3C). It is possible theoretically to construct a response
curve that matches the measured curve between the rectified (zero) and saturated rates, and
extends linearly beyond them, e.g., as had been routinely done with responses from auditory
nerve fibers (Rose et al. 1967). A new fast procedure to construct the “linearized” response is
described in the Appendix. The correlation coefficient between the predicted and “constructed
response” curves is designated as py;p.

Finally, there is no unique way to align the response curves (Fig. 3C) with the stimulus
profile (Fig. 3A). One useful alignment is according to the BF of the cell (as indicated by the
location of the dashed vertical arrow in Fig. 3). This alignment is useful because it highlights
the way the cell distorts the input spectral profile according to its RF. For instance, if a cell
has an RF consisting only of a narrow excitatory response area around the BF (i.e., narrow
relative to the details of the stimulus profile), then its responses would simply track the shape
of the input profile as it is shifted past the BF. For such a cell, the response curve aligned with
the BF would match the stimulus profile. If a cell’s RF is asymmetric or broad relative to the
stimulus profile features (or equivalently, if some stimulus ripples are filtered out by T'(Q2)), the
profile and the BF-aligned response curve would differ in shape.

(6)

RESULTS

The data illustrated here were collected from a total of 51 single-unit recordings in 5 animals.
All these units responded to tones and rippled stimuli. In this section, we first illustrate the
dependence of the measured response functions r,, (6) on absolute stimulus level, then compare
measured and predicted responses to stimuli with two ripple components. Next, responses to
stimuli with progressively increasing numbers of ripples are described. Finally, measured and
predicted responses are compared for natural speech vowel spectral profiles.

Responses to ripples as a function of stimulus level

In most cases, responses were obtained at one stimulus level. To justify this procedure,
it was important to confirm that the shape of the response function r,,(6) did not depend
critically on stimulus level. This was tested in 9 cells where overall stimulus levels were varied
over a 20-30 dB range. In all cases, the shape of the measured response curve r,,(6) remained
relatively stable, as illustrated for the two-ripple and five-ripple stimuli in Figs. 4B and C. The
strength of the response (spike count), however, may vary significantly with level. For instance,
this unit had a nonmonotonic rate-level function (Fig. 4A), and hence the response decreased
at the highest level (65 dB).
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Superposition of responses to pairs of ripples

Responses of Al cells to a pair of ripples were compared to those predicted from the su-
perposition of the responses to each ripple separately. The first example is that of Fig. 3C,
where apart from the (nonlinear) half-wave rectification, the measured and predicted response
curves are well matched (p = 0.92, pi, = 0.98). In Fig. 5, the same unit is now driven by a
different pair of ripples (0.8 and 1.6 cycles/octave). According to T(£2), the higher ripple at 1.6
cycles/octave is predicted to be attenuated by the cell, and hence the response r,,(6§) should
largely follow the lower ripple (0.8 cycles/octave) profile. The measured response agrees with
this prediction (p = 0.88, pun = 0.88). Furthermore, it is quite different from the stimulus
profile which exhibits smaller peaks due to the 1.6 cycles/octave component.

These responses can be also interpreted as the cross correlation of the RF (or convolution
of the impulse response) with the spectral profile (see METHODS). As such, the changes in
rm(6) compared to the stimulus profile can be attributed to the shape of the RF. For instance,
the absence of the smaller peaks (Fig. 5C) can be explained by the suppression induced by
neighboring large peaks (to their right) via the inhibitory side-bands of the RF.

Examples from 4 other cells with different RFs are presented in Fig. 6. In each case, the
responses can be interpreted as the convolution of the RF with the stimulus profile. The
responses in Figs. 6B and 6D clearly illustrate the filtering effects of the RF (or the ripple
transfer function) since r,,(6) differs significantly from the corresponding stimulus spectrum.
For example, in Fig. 6B, the small peak in the stimulus spectral profile at 2.5 or 17 kHz evokes
little corresponding response; in Fig. 6D, the peaks of the spectral profile evoke responses with
the opposite relative strength. Note that in both cases, these changes are explained by the T'(2)
in that the predicted response r,(§) matches the basic features of the response curve rn,(8).

Responses to combinations of three or more ripples

The responses of a unit to a progressively larger number of ripples is shown in Fig. 7. In all
cases, the match between predicted and measured responses is comparable (p ~ 0.8). The effect
of the cell’s filtering of different ripple amplitudes and phases is more dramatically seen with
three or more ripples. For instance, in Figs. 7B and C, the responses differ significantly from
the shape of the spectral profile which contains several ripples outside the T'({2) pass-band.

Responses from two other cells to 4 and 5 ripple combinations are shown in Fig. 8. Again,
note the difference between the response curves and the corresponding spectral profiles. For
instance in Fig. 8A, the relative strength of the responses to the stimulus peaks at 8 and 16
kHz is reversed; in Fig. 8B, the response to the peak at 4 kHz (or approximately 30 kHz) is
significantly narrower. In both cases, these response features are predicted from the RF (or the
ripple transfer function). These examples, therefore, demonstrate that the responses to stimuli
consisting of more than two ripple components basically superimpose as described for ripple
pairs.

Summary of responses to ripple combinations

The results from all tests on Al units recorded are summarized in Fig. 9. Figure 9A shows
the distribution of the correlation coefficient between predicted and measured response, p, for
ripple pairs. In 75 % of all cells, fair predictions could be made (p > 0.6). Two of the worst
three predictions belong to cells from the same penetration that had narrow transfer functions




Shamma and Versnel 9

and relatively high characteristic ripple (1.6 cycles/octave). Figure 9B demonstrates that the
correlation coefficient gradually decreases with the number of ripple components in the stimulus
profile. Note that we have included in this plot for comparison correlation coefficients obtained

with single ripples; these data are typical of the errors expected in measuring the transfer
functions T'(Q).

Responses to vowel-like spectral envelopes

Vowel spectra can be described in terms of ripple combinations of various amplitudes and
phases as shown in Fig. 10. Such complexes were presented consisting of 101 logarithmically
spaced tones over 5 octaves (0.25 to 8 kHz), and with a spectral envelope constructed as a
combination of 10 ripple components (0.2 - 2 cycles/octave). The responses were, as before,
recorded as a function of shift of the spectrum (6) along the logarithmic frequency. Measured
and predicted responses to the spectral profiles of the vowels /aa/ and /iy/ were obtained in 8
units; two representative cases are shown in Figs. 10A and 10B.

Measured and predicted responses are fairly matched in both cases. Furthermore, the re-
sponses differ significantly from the corresponding spectral profiles. For example, in Fig. 10A,
the unit responds vigorously only to the second peak of the /aa/ profile (at 1 kHz), presumably
because of the one-sided inhibition seen in the RF of the cell. Similarly, the unit in Fig. 10B
responds better to the /iy/ peak at 3.5 kHz than to that at 0.3 kHz (or approximately 8 kHz)
although the two are of equal height. These response features are quantitatively predicted from
the transfer function of the units.

DISCUSSION

We have examined here the extent to which Al cells respond linearly to their input spectral
profiles. In an earlier report (Shamma et al. 1994), it was concluded that a linear component
must exist since parameters of the ripple transfer function were roughly correlated to those
derived from the response area measured using tonal stimuli. In this study, a fundamental
consequence of the linearity hypothesis is investigated, namely the superposition principle.
Specifically, it is shown that a unit response to a spectral profile composed of several ripples
can be reasonably well predicted by the linear sum of its responses to the individual ripples, i.e.,
from the ripple transfer function. This is demonstrated here for spectral profiles composed of
up to 5 equal amplitude ripples, and for vowel-like spectra with 10 variable amplitude ripples.

Responses of simple cells in the primary visual cortex (VI) have also been interpreted to be
analogously linear with respect to visual gratings (De Valois and De Valois 1988). While no
physiological experiments have been reported to test the superposition principle directly, the
linearity of VI cells has been indirectly demonstrated in a variety of other ways. For instance,
Gleze et al. (1982), Jones and Palmer (1987), and Jagadeesh et al. (1993), and others, have
obtained results that are strongly consistent with this hypothesis both spatially and temporally.

Sources of prediction errors

Clearly, prediction errors (i.e., differences between r,(6) and r,(6)) can be found in all ex-
amples illustrated. They are attributable to various sources. For instance, measured responses
are in many cases half-wave rectified or saturated over a certain § interval (see Figs. 3, 5, 6B,
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6D, 7, 8, and 10); The effects of such nonlinearities is usually simple to discern. Another source
of errors is the measurement of the ripple transfer function. These errors are random in na-
ture and are partly related to possible changes in the state of the animal during the relatively
long period of recording from a single unit. These errors are demonstrated by the fact that
sequentially recorded transfer functions of a given unit, while similar in basic outlines, are never
identical in amplitude and phase. The amount of this variability is roughly indicated by the
p values for single ripples in Fig. 9B. The effects of such random errors are expected to accu-
mulate when predicting the responses from increasing numbers of ripple components (Fig. 9B).
Finally, the responses of a unit may not be predictable because of a fundamental nonlinearity
in its responses, i.e., it simply does not satisfy the superposition principle. Examples of such
essentially nonlinear units were also discussed in Shamma et al. (1994).

Broadband versus narrowband stimuli

The significant linearity of Al responses is somewhat surprising given the known nonlineari-
ties at various precortical stages. How is it that a succession of compressive nonlinearities (due
to rectification and saturation of auditory-nerve fibers, cochlear nucleus and other auditory
neurons) do not significantly disrupt the linearity of Al responses? One possible explanation is
the broadband nature of the ripple stimuli which in effect may make the system appear more
linear. Such a phenomenon is well known in the engineering literature where it was discovered
that many nonlinear systems can be largely linearized through the use of broadband input sig-
nals (Brockett and Cebuhar 1988). Theoretical analysis and understanding of this phenomenon
is however still limited.

If this explanation is valid, then AI responses to narrowband stimuli such as tones and tone
pairs may not be as linear, and the response area or other response measures obtained with
tonal stimuli are not strictly equivalent to the RF. Therefore linearly predicting Al responses
from tonal responses may inherently be more difficult. This is in addition to the practical
difficulties of measuring the inhibitory side-bands with single tones because of the usual lack
of spontaneous activity in cortical cells (see discussion in Shamma et al. 1994), and the added
complications of interactions and elevated background firing rates with two tone stimuli. These
difficulties make the RF a much cleaner response measure to use than tonal stimuli for predicting
Al responses to broadband profiles.

The above described potential disparity between broadband and narrowband stimuli may
also explain the relative weakness of the correlations obtained between the RF and response
area parameters (Shamma et al. 1994). A better correspondence might result if the RF is
compared with response areas measured with tones in a broadband background such as white
noise or the flat tone complex used as carrier for the ripples in our experiments. This latter
stimulus is identical to the so-called “single increment profile” widely used in profile analysis
experiments (Green 1988).

It should be emphasized here that the linearity of the responses observed in these experi-
ments is not due to restricting the dynamic range of the input stimulus or of the output spike
rate. Rather, it is seen for deep stimulus profile modulations (e.g., 90-100% as described in
METHODS) and over a range of absolute levels (e.g., as in Fig. 4). Furthermore, simple non-
linearities such as spike rate saturation and half-wave rectification evidently do not affect the
essential linearity of the response but rather limit our ability to “see” the full waveform, much
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like the way these nonlinearities affect the firing rate of auditory-nerve fibers (Rose et al. 1967;
see also the Appendix).

Summary of major conclusions

There are two conclusions implied by the results presented here and in Shamma et al.
(1994):

(1) realistic sounds such as speech, music, and various environmental sounds are mostly
broadband in nature. According to the experimental results, Al analyzes the acoustic spectrum
of such sounds in a substantially linear manner.

(2) AI cells exhibit bandpass ripple transfer functions with a range of different characteristic
ripples and phases. This suggests that Al does not represent the spectral profile directly, but
instead, it analyzes the profile into its constituent ripple components.

APPENDIX

Reconstruction of saturated and rectified response rate functions

Measured and predicted responses of Al cells often appear similar except for a saturation or
half-wave rectification of the measured response rate (e.g., as in Figs. 3C and 10A). Presumably,
these nonlinearities are attributed to such biophysical phenomena as threshold and latency of
spike firing. In order to minimize these distortions, and hence to assess objectively the predictive
capability of the ripple transfer function (or the RF), the following method was developed to
reconstruct a linearized response curve, i.e., the response of the cell assuming it had an infinite
dynamic range. Other procedures have been used to reconstruct linearized auditory-nerve fiber
responses such as reversing the polarity of the stimulus (Rose et al. 1967).

Intuitively, the algorithm constructs a waveform composed of the input ripple components,
and matches closest (in the mean square error sense) the measured response curve over the
linear range. The technique we used is known as the convez projection method (Yang et al.
1992; Mallat and Zhong 1989), and is illustrated in Fig. 11A. It consists of defining two sets
of important characteristics (features or constraints) of the response curve, and then finding
iteratively the waveform that satisfies both these sets simultaneously. The sets selected were
the following:

o The constructed (response) waveform should be composed of the same ripple components
as in the stimulus, i.e., to assume that Al response is linear with respect to ripples.

o The constructed waveform should have the same zero crossings as the measured response
curve. The zero level is defined either as the spike count for the flat spectral profile (i.e.,
the same definition as used in all figures in the paper) or the average spike count of the
response. The latter definition is prefered if the response to the flat spectrum is very low
(< 5 spikes).

Each of these two properties imply many waveforms (or spaces designated S; and S; in
Fig. 11A). However, the conjunction of these two spaces of waveforms can be shown to define a
unique waveform (Logan 1977). In order to find it, we start with any arbitrary waveform (w,)
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that satisfies one of these properties, i.e., is formally in one space (e.g., a square-wave that has
the same level-crossings as the measured response). The waveform is then projected (P;) onto
the other space ( i.e., find the closest curve (w;) to the square-wave which is composed only of
the stimulus ripples). This latter curve (w;) is now likely to have different zero-crossings than
the desired waveform. So now we repeat the procedure by projecting w; back unto Sy (P2) , and
so on until the projections yield a stable (i.e., non-changing) waveform. This procedure always
converges for this problem because the two spaces selected are conver (Yang et al. 1992). It
usually takes no more than 20 iterations to find the desired waveform. A typical example of
such a response reconstruction is shown in Fig. 11B for the same unit and test as in Fig. 8B.
The reconstructed curve (thin solid line in upper plot) matches well the response curve above
the baseline, and does not suffer from the half-wave rectification of the response. Comparing
the reconstructed response with the predicted curve (thick solid line in the lower plot; same as
in Fig. 8B) yields therefore a higher correlation coefficient (pii, = 0.9). On the average, pin is
larger than p by 0.11.
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FIGURE LEGENDS

Figure 1

A: Schematic of a stimulus spectrum composed of a single ripple at 0.5 cycle/octave and
0° phase. Its amplitude is defined as a 100% linear amplitude modulation. B: Schematic of a
stimulus spectrum composed of two ripples at 0.4 and 0.8 cycle/octave and phases —105° and
—41°, respectively. The amplitude of the ripple complex is defined as a 100% linear amplitude
modulation.

Figure 2

A: Measured and fitted responses to single ripple profiles at various ripple frequencies. In
each plot, the response spike count to a ripple is measured at various phases of the ripple (eight
% steps per cycle) as indicated by the circles. The solid curve is the best sinusoidal fit to the
data. For the 0.4 cycle/octave ripple, a full cycle of the response is equivalent to a 2.5 octave
shift (or translation) of the stimulus profile, as indicated by the two axes at the bottom. For
ripples 0.8 - 1.6 cycles/octave, the full cycle corresponds to progressively smaller shifts of the
profiles. So in the plots, the periodic response curves are simply repeated to indicate what they
would look like if the full 2.5 octave shift had been applied. The dotted baseline is the spike
count obtained for the flat-spectrum stimulus.

B: The ripple transfer function T'(€2). The plot to the left represents the weighted amplitude
of the fitted sinusoids (as in A) as a function of ripple frequency . €}, is the ripple frequency
with the maximum response amplitude. The plot to the right represents the phases of the fitted
sinusoids as a function of ripple frequency. The characteristic phase, ®,, is the intercept of the
linear fit to the data.

C: The response field (RF) of the unit. It is computed from the inverse Fourier transform
of the ripple transfer function.

Figure 3

A: The spectral profile of a stimulus (left plot) composed of two ripples. The amplitude and
phases of the two ripples are schematically illustrated in the right plot.

B: The spectral profile of the stimulus with increasing amount of shift (from top to bottom,
as indicated by the dashed line). Note that the profile is periodic against the tonotopic axis
with a period of 2.5 octaves. The underlying tones of the stimulus complex are omitted in these
plots. The raster to the right illustrates the nature of the responses obtained as a function of
profile shift. The profile is always shifted by a total amount equal to its period (i.e., 2.5 octaves
for this profile). The stimulus burst is indicated by the bar below the raster. The arrows define
the window over which the response spike counts are made.

C: The response spike counts to different shifts are indicated by the dashed curve as a
function of profile shift. The solid line is the response predicted from the ripple transfer function
and the stimulus profile. The scale of the solid curve is in arbitrary linear units. The dotted
horizontal line is the spike count of the flat spectral profile; it is used as the baseline for the
predicted response curve, r,(6). The whole plot is aligned with the stimulus profile according
the BF of the unit (determined from Fig. 2C). The correlation coefficients p and py, are
indicated in the figure.
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Figure 4

Responses for different overall stimulus levels. A: Nonmonotonic rate-level function of a
single unit, measured between 35 and 85 dB SPL (dashed line represents extrapolated function
below 35 dB SPL). B: Measured response curves to a ripple pair spectral profile (0.4 and 0.8
cycle/octave) as a function of spectral shift. Absolute level of the stimulus is indicated to the
right of each plot. C: Measured response curves to a complex of 5 ripples for the same unit
(0.4-2 cycle/octave in steps of 0.4 cycles/octave) as a function of profile shift. Absolute level
of the stimulus is indicated to the right of each plot.

Figure 5

Responses of a single unit to a 2-ripple spectral profile. A: The RF and ripple transfer
function of the unit. Such unit response properties are enclosed within a box in all remaining
figures of the paper so as to highlight them. Details as described for Figs. 2B,C. B: The stimulus
spectral profile and its ripple content, I(f2). The dashed portion of the spectral profile is the
(nonexistent) periodic extension of the profile, which is rotated in from the right as the profile
is shifted by 8. It is drawn simply to facilitate comparison with the measured and predicted
response curves below. Details are as in Fig. 3A. C': Measured and predicted responses. Details
are as in Fig. 3C.

Figure 6

Measured and predicted responses to various ripple pairs for 4 different single units (A-D).
In each case, the RF of the unit is illustrated at the top, the stimulus spectral profile in the
middle, and the responses at the bottom. The ripple content of the stimulus is indicated next
to the bottom plot. Other details are as in Fig. 5.

Figure 7

Measured and predicted responses of a single unit to stimulus profiles with increasing number
of ripples (2 in A, 3 in B, and 5 C). The response characteristics of the unit are shown in the
box (top of figure). Other details of the figure are as in Fig. 5.

Figure 8

Measured and predicted responses of two units to multiple ripple stimuli. details of the
figure are as in Fig. 5. A: Responses to profile of 4 ripple components. B: Responses to profile
of 5 ripple components.

Figure 9

A: Distribution histogram of the correlation index p of cells for two-ripple stimuli. For cells
tested with more than one ripple pair, the average p is represented in the histogram. B: Mean
and SD of p over all cells as a function of number of ripple components. N indicates number
of cells.

Figure 10

Measured and predicted responses to vowel-like profiles (vowel /aa/ in A, and vowel /iy/
in B). All details are as in Fig. 5. The stimulus profiles are extracted from naturally spoken
tokens.
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Figure 11

Reconstruction of measured responses to remove rate saturation and half-wave rectification.
A: Schematic of the reconstruction procedure. B: Upper plot illustrates the reconstructed
(thin solid line) versus measured (dashed line) response curves. Lower plot is of the predicted
(thick solid line) versus measured response curves for the same test as in Fig. 8B. All details
are as in Fig. 3C.
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